Für das Zukunftspreis-Projekt arbeitet Ommers Lehrstuhl mit der Düsseldorfer Nyris GmbH zusammen, die eine visuelle Suchfunktion anbietet. Mithilfe von Stable Diffusion lassen sich etwa aus Konstruktions-Datensätzen (CAD-Daten) dreidimensionale und fotorealistische Bilder erzeugen. Eine der Anwendungen: Beim Ausfall technischer Anlagen in der Industrie können laut Team defekte Teile so schnell erkannt und ersetzt werden.
Licht wird intelligent
Um intelligente Scheinwerfer geht es bei dem Projekt der Osram International GmbH aus Regensburg und des Fraunhofer-Instituts für Zuverlässigkeit und Mikrointegration IZM in Berlin. Das Team entwickelte ein "digitales Licht" in Form winziger, einzeln bedienbarer LED-Pixel, das neue, ressourcenschonende Anwendungen ermöglichen soll. Team-Sprecher Norwin von Malm sprach von einem "echten Lichtblick".
Eine Anwendung ist ein Autoscheinwerfer, der durch intelligente Lichtverteilung auf der Fahrbahn "ein deutliches Plus an Sicherheit" biete. Etwa werde der Gegenverkehr nicht mehr geblendet. Bereiche, die hell sein sollen, werden ausgeleuchtet, andere Bereiche, wie ein entgegenkommendes Fahrzeug, bleiben dunkel.
Der Scheinwerfer hat 25.600 Lichtquellen auf einer LED-Lichtmatrix aus 320 mal 80 Lichtpunkten. Jede LED ist einzeln digital anzusteuern. Nur wirklich benötigtes Licht wird eingeschaltet. Zudem wird Licht zur Information genutzt. So projiziert der Scheinwerfer auch Piktogramme auf die Straße, etwa eine Schneeflocke bei Frostgefahr. Die Entwicklung sei mehr als ein neuer Autoscheinwerfer, betonte von Malm. Sie biete die Basis für eine Vielzahl neuer Anwendungen, etwa im Bereich der Augmented Reality (AR), der erweiterten Realität.
Mit einer AR-Brille, die neben der realen Umgebung zusätzlich digitale Informationen ins Gesichtsfeld einspielt, könne die Lichtmatrix zum virtuellen Monitor werden, so das Team. Nötig sei die Entwicklung leichter Brillen mit langer Akku-Laufzeit.
Energiespar-Chip für Windkraftanlagen und Züge
Die Infineon Technologies AG aus München erarbeitete mit der Technischen Universität Chemnitz ein hocheffizientes Leistungshalbleiter-Modul, das zuverlässiger, schneller und leistungsstärker als bisher Strom in hohen Spannungsklassen schalten und so zur Energiewende beitragen soll. Der 3.300-Volt-Energiesparchip aus Siliziumkarbid mit neuartiger Kupferkontaktierung könne etwa in Zügen, Windkraftanlagen und überall dort zum Einsatz kommen, wo in Sekundenbruchteilen viel Strom geregelt werden müsse, so die Entwickler.
Die Schaltverluste seien gegenüber bisherigen Chips aus Silizium um 90 Prozent gesenkt und zugleich die Zuverlässigkeit um das 10-fache gesteigert worden. Das Modul bedeute eine "extreme Energieersparnis", erläuterte Team-Sprecher Konrad Schraml. Schaltverluste könnten gesenkt und etwa Maschinen elektrifiziert werden, die bisher auf fossile Brennstoffe angewiesen seien.
Anwendungsorientierter Preis
Im vergangenen Jahr hatten Forscher aus Erlangen die Auszeichnung für die Entwicklung eines neuartigen Magnetresonanztomographie-Geräts (MRT) erhalten. Im Jahr davor erhielten ihn Forschende von Carl Zeiss Microscopy aus Jena für eine Mikroskop-Technik, mit der lebende Zellen besser untersucht werden können.
2021 ging die Auszeichnung an die Biontech-Gründer Özlem Türeci und Uğur Şahin für ihre Forschung an der mRNA-Technik und die Entwicklung des Corona-Impfstoffs, mit dem sie weltweit bekannt wurden.